

Moon Rabbit Defi Contracts Code Audit by Ambisafe Inc.
July, 2022

360 Pine Street, Suite 700, San Francisco, California 94104, USA

hello@ambisafe.com

1. INTRODUCTION. The Client requested Ambisafe to perform a code audit of the contracts

implementing Moon Rabbit Defi 2.0. The contracts in question can be identified by the
following git commit hash:

be82c969e60bf4c02e887c48eabfdcebd72f8dd5

The scope of the audit consists of 39 contracts, interfaces and libraries.

After the initial code audit, Moon Rabbit DeFi applied a number of updates which can be
identified by the following git commit hash:

af54cbf920406bd5b02d945c29eebd8df83cc3f5

Additional verification was performed after that.

2. DISCLAIMER. The code audit makes no statements or warranties about utility of the code,

safety of the code, suitability of the business model, regulatory regime for the business

model, or any other statements about fitness of the contracts for any specific purpose, or
their bugfree status. The code audit documentation below is for internal management
discussion purposes only and should not be used or relied upon by external parties

without the express written consent of Ambisafe.

3. EXECUTIVE SUMMARY. All the initially identified, minor and above, severity issues were

fixed and are not present in the final version of the contracts. There are no known
compiler bugs for the specified compiler version (0.8.3), that might affect the contracts’
logic. There were 1 critical, 2 major, 4 minor, 25 informational and optimizational issues

identified in the initial version of the contracts. The non-informational issues found in the
contract were not present in the final version. They are described below for historical
purposes.
DSMath.rpow() and MathHelper.mulDiv() functions were compared with original
implementations and confirmed to be equal.

4. CRITICAL BUGS AND VULNERABILITIES. One critical issue was identified that would allow a

malicious actor to drain all the deposited liquidity from the protocol along with unlimited
minting of the stable tokens. During the borrowing process of the native asset, a user

address is called to transfer the funds, but user debt accounting happens only after that. In
the initial version, this allowed a user to call the contract back and illegally withdraw
their own liquidity making the debt uncollateralized. This critical issue has been fixed.

5. LINE BY LINE REVIEW. FIXED ISSUES.

5.1. DefiCore, line 84. Optimization, in the updateCollateral() function the

assetParameters variable is read from storage twice.

5.2. DefiCore, line 94. Optimization, in the updateCollateral() function the
assetParameters.isAvailableAsCollateral(_assetKey) is checked twice.

5.3. DefiCore, line 108. Note, the updateCollateral() function could emit an event.

5.4. DefiCore, line 133. Note, the addLiquidity() function allows a reentrancy before

updating the user supply assets.

5.5. DefiCore, line 170. Note, the withdrawLiquidity() function allows a reentrancy
before updating the user supply assets.

5.6. DefiCore, line 188. Note, the approveToDelegateBorrow() function could emit

an event.

5.7. DefiCore, line 204. Critical, the borrowFor() function adds a borrowed asset to
the user info after the assets are sent to the user. During this sending, a reentrancy
is possible to take unlimited debt.

5.8. DefiCore, line 294. Note, in the liquidation() function revert reason, the word

'then' should be 'than'.

5.9. DefiCore, line 309. Note, in the liquidation() function revert reason, the word
'then' should be 'than'.

5.10. DefiCore, line 368. Minor, the claimDistributionRewards() function should use

safeTransfer() when transferring the reward.

5.11. DefiCore, line 619. Note, in the getAvailableLiquidity() function, the local
variable _borrowedLimitInUSD has a confusing name. Consider naming it
_borrowLimitInUSD.

5.12. InterestRateLibrary, line 10. Optimization, the InterestRateLibrary could be

redone to store all the values in the bytecode.

5.13. LiquidityPool, line 60. Optimization, the lastLiquidity pollutes storage, it would
be cheaper to store a block and amount per user.

5.14. LiquidityPool, line 72. Optimization, the withdrawLiquidity() function does an

excessive ‘enough liquidity’ check in case _isMaxWithdraw is true.

5.15. LiquidityPool, line 132. Minor, the getAPY() function should divide the interest
by getTotalLiquidity().

5.16. LiquidityPool, line 228. Major, the _beforeTokenTransfer() function doesn't

verify if the transferred LP tokens were just added.

5.17. LiquidityPool, line 292. Minor, the _ifNativePoolCheck() function will silently
lock msg.value sent with the transaction if the user has enough native token.

5.18. Registry, line 57. Minor, the addProxyContract() function should call a

setInjector(address(this)) on the newly deployed proxy to avoid setup
interception.

5.19. RewardsDistribution, line 207. Optimization, the _updateCumulativeSums()

function writes LiquidityPoolInfo to storage even if no values have changed.

5.20. UserInfoRegistry, line 378. Note, the getMaxLiquidationQuantity() could use
mulWithPrecision().

5.21. UserInfoRegistry, line 431. Optimization, the _getUserAssets() function could

use _userAssets.values() instead of reading values manually.

5.22. AbstractPool, line 154. Major, the repayBorrowFor() function collects reserve
funds from the same interest multiple times.

5.23. PureParameters, line 28. Optimization, the Param struct could instead encode all

parameters as bytes32.

5.24. StablePermitToken, line 14. Optimization, the registry variable should be made
immutable.

6. LINE BY LINE VERIFICATION. REMAINING AND ACKNOWLEDGED ISSUES.

6.1. CompoundRateKeeper, line 9. Optimization, the CompoundRate struct could be

optimized to take a single storage slot.

6.2. DefiCore, line 414. Note, it would be helpful to add the payerAddr parameter to
the getMaxToRepay() function.

6.3. LiquidityPool, line 52. Optimization, the addLiquidity() function excessively

checks user balance.

6.4. LiquidityPool, line 83. Note, in the withdrawLiquidity() function, the
convertLPTokensToAsset(_userLPBalance) <= _liquidityAmount case is
always false.

6.5. Registry, line 158. Optimization, in the getProxyUpgrader() function, the
_proxyUpgrader variable is read from storage twice.

6.6. ProxyUpgrader, line 42. Note, in the getImplementation() function could use

ImplementationGetter(what).implementation().

6.7. DecimalsConverter, line 20. Note, the convert() function will round down the
result if the destination is smaller than the base.

6.8. DSMath, line 8. Note, misleading comment. It calculates ((x/b)^n)*b.

Ambisafe Inc.

360 Pine Street, Suite 700, San Francisco, California 94104, USA

hello@ambisafe.com

